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The transfer of atoms or groups, multiply bonded to a transition
metal, to an alkene is an important class of reactions.1 Although
the transfer of oxygen atoms from metal-oxo species to alkenes
to give epoxides2 and 1,2-diols3 as well as the transfer of carbenes
from metal carbenes to give cyclopropanes4 have been extensively
studied, less is known about the reactions of metal-nitrogen
multiple bonds with alkenes. Nitrido complexes of manganese(V)
porphyrin,5 manganese(V) salen,6 and ruthenium(VI) porphyrin7

have been used as reagents for the aziridination of alkenes; however,
these complexes need to be activated with an electrophile such as
trifluoroacetic anhydride to produce imido complexes as the active
species. Although a wide variety of transition metal-nitrido com-
plexes are known, none of them has been found to effect direct
aziridination of alkenes. The cationic speciescis-[(terpy)Os(N)-
Cl2]+ reacts directly with aryl-substituted alkenes; however, unusual
η2-azaallenium complexes, in which the nitrogen atom inserts be-
tween the two carbons of the alkene, are formed rather than aziri-
dines.8 This osmium complex also undergoes a [4+ 1] cycload-
dition reaction with cyclohexadienes to produce bicyclic osmium
amido complexes.9

We recently reported the synthesis and reactivities of a highly
electrophilic, cationic ruthenium(VI) nitrido complex containing the
cyclohexylene-bridged salen ligand,N,N′-bis(salicylidene)o-cyclo-
hexyldiamine dianion (salchda).10 We report herein that this ruthen-
ium(VI) nitrido species undergoes direct nitrogen atom transfer to
alkenes at room temperature to produce (salen)ruthenium aziridine
complexes.

No reaction occurs between [RuVI(N)(salchda)(CH3OH)]PF6 (1)
(0.16 mmol) and 2,3-dimethyl-2-butene (8.4 mmol) in CH2Cl2 (5
mL) for over 24 h at room temperature. However, upon addition
of a nitrogen donor ligand (2.5 mmol) such as pyridine (py) or
1-methylimidazole (1-MeIm),1 reacts readily with 2,3-dimethyl-
2-butene to give a blue solution, which then gradually changes to
green after ca. 3 h atroom temperature.11 [RuIV(Az1

(-H))(salchda)-
(py)]PF6 (2, Az1 ) 2,2,3,3-tetramethylaziridine)12 and [RuIII (Az1)-
(salchda)(py)]PF6 (3)13 have been isolated from the blue and green
solutions, respectively.14 Compound2 is formulated as a RuIV

complex with a deprotonated aziridine ligand. The electrospray
ionization mass spectrometry (ESI-MS) of2 in CH2Cl2 (+ve mode)
shows peaks atm/z) 599 and 520, which are assigned to the parent
ion [RuIV(Az1

(-H))(salchda)(py)]+ and [RuIV(Az1
(-H))(salchda)]+

respectively.2 is diamagnetic, consistent with its formulation as a
d4 RuIV complex.10 Solutions of2 in various solvents such as ClCH2-
CH2Cl, CH3CN, or CH3OH are found to be converted to3 within
hours at room temperature.

Compound3 has a room-temperature magnetic moment ofµeff

) 1.99µB (Gouy method), consistent with its formulation as ad5

RuIII complex. The ESI-mass spectrum (+ve mode) of3 in CH2-

Cl2 shows a single peak atm/z ) 600, which is assigned to the
parent ion [RuIII (Az1)(salchda)(py)]+. The N-H stretch of the aziri-
dine, however, is not observed in the IR. The structure of3 has
been determined by X-ray crystallography (Figure 1). The Ru-
N(aziridine) distance of 2.1049(19) Å is similar to the Ru-N(py)
distance of 2.1068(19) Å, consistent with a neutral aziridine ligand.
The C-C (1.513 Å) and C-N (1.506, 1.511 Å) distances in the
aziridine ligand are all indicative of single bonds. There are a few
examples of aziridine complexes, including that of Rh,15 W,16 Mn,16

and Co;17 these are all prepared by direct ligation of the aziridine
to the metal center.

1 also reacts at room temperature with a variety of aryl-substi-
tuted alkenes including styrene andtrans-â-methylstyrene in the
presence of py or 1-MeIm to give the corresponding ruthenium-
(III) aziridine complexes, which are air-stable dark-green crystalline
solids. For these substrates, however, the orange solution of1 is
changed directly to green upon addition of the alkene without going
through a blue intermediate. This suggests that the intermediate
RuIV(Az(-H)) species for these substrates are highly unstable and
are reduced rapidly to the corresponding RuIII (Az) species. The
structure of the complex obtained fromtrans-â-methylstyrene,
[RuIII (Az2)(salchda)(1-MeIm)]PF6 (4, Az2 ) trans-2-methyl-3-
phenylaziridine),18 has been determined by X-ray crystallography
(Figure S1, Supporting Information). The aziridine ligand is in the
transconfiguration, indicating that no isomerization has occurred.
The Ru-N(aziridine) distance (2.097 Å) is similar to that in3.

The free aziridines (Az) can be liberated in 90-95% yield (GC)
from the ruthenium(III) aziridine complexes, [RuIII (Az)(salchda)-
(L)]PF6 (Az ) 2,2,3,3-tetramethylaziridine, 2-phenylaziridine or
trans-2-methyl-3-phenylaziridine; L) py or 1-MeIm) by reduction
of Ru(III) to Ru(II) with zinc amalgam in acetonitrile in the presence
of 10 equiv of PPh3 (Supporting Information).

The kinetics of the reaction of1 with 2,3-dimethyl-2-butene in
the presence of pyridine under argon have been studied by UV-
vis spectrophotometric methods. The UV-vis spectral changes in
1,2-dichloroethane at 298.0 K show that this reaction consists of
two well-separated consecutive steps (Figure S2). The final spectra
for the first and second steps are very similar to those of2 and3,
respectively; hence, the reaction scheme is1 f 2 f 3. The kinetics
of the first step were studied under pseudo-first-order conditions
([RuVI] ) 1.0 × 10-3 - 1.0 × 10-4 M, [alkene] ) 1.0-1.8 M,
[py] ) 0.02-1.0 M), the growth of2 at 642 nm followed first-
order kinetics for over three half-lives. The pseudo-first-order rate
constant,kobs, is independent of [RuVI], depends linearly on [alkene],
but exhibits saturation behavior on [py] (Figure S3). The rate law
of the reaction is shown in eq 1.

The observed saturation kinetics on varying [py] is consistent with
† City University of Hong Kong.
‡ National Taiwan University.

-d[RuVI(N)]
dt

) k2[RuVI(N)][alkene]( K[py]

1 + K[py]) (1)
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the reversible binding of pyridine to ruthenium(VI) (Scheme 1),
and the equilibrium constantK is (15.6( 1.1) M-1 at 298.0 K.k2

(which represents the rate constant for the reaction between the
pyridine-coordinated species, [RuVI(N)(salchda)(py)]+, and the al-
kene) is found to be (4.61( 0.20)× 10-3 M-1 s-1 at 298.0 K.

The second step of the reaction, i.e.,2 f 3, also follows first-
order kinetics for over three half-lives. The first-order rate constant,
k′, is independent of [RuVI], [alkene] or [py]. At 298.0 K,k′ is
found to be (6.2( 0.1) × 10-4 s-1. The conversion of2 to 3 was
also independently studied using a pure sample of2; the rate
constants in 1,2-dichloroethane and acetonitrile were found to be
(9.0 ( 0.3) × 10-4 and (8.2( 0.3) × 10-4 s-1, respectively, at
298.0 K. The reaction of1 with 2,3-dimethyl-2-butene can be
represented by Scheme 1.

A similar ligand-accelerated reaction has also been observed in
the epoxidation of alkenes by [CrV(salen)(O)]+.19 In the five-coor-
dinate complex the Cr atom is displaced 0.53 Å above the salen
plane; however, it is pulled back to 0.26 Å upon axial ligation with
pyridineN-oxide. This is accompanied by a weakening of the Crd
O bond. It is likely that similar geometrical changes occur upon
coordination of pyridine to RuVItN, which would reduce the
reorganization energy for atom transfer.

The conversion of RuIV(Az(-H)) to RuIII (Az) species requires the
addition of a H atom. In the reaction of1 with excess styrene in
py/CH2Cl2, in addition to the formation of the corresponding
ruthenium(III) aziridine complex, PhCtN was detected (GC) in
the solution in 25% yield.20 Also a close examination of the UV/
vis spectral changes for2 f 3 indicates that only 69( 2% of 3 is
formed. These observations are consistent with a mechanism that
involves an initial rate-limiting, aziridine ring-opening rearrangement
of RuIV(Az(-H)) to a speciesRuX which can transfer H atoms to
RuIV(Az(-H)). When the substrate is styrene, loss of H atoms from
RuX results in the formation of PhCtN, among other products. A
possible candidate forRuX is anη2-azaallenium complex that is
similar to that formed between [(terpy)Os(N)Cl2]+ and aryl-

substituted alkenes,8 where the nitrogen atom of the aziridine is
inserted between the carbon-carbon bond.

This is the first example of direct nitrogen atom transfer from a
metal nitride to alkenes. The remarkable steric and electronic tuna-
bility of salen will be utilized to probe the mechanism of the aziri-
dination reaction and the reduction of RuIV(Az(-H)) to RuIII (Az).
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Figure 1. Molecular structure of the cation of3, thermal ellipsoids drawn
at the 30% probability (H atoms are omitted except N(4)-H). Selected
bond lengths (Å) and bond angles (deg): Ru-N(4) 2.1049(19), Ru-N(3)
2.1068(19), Ru-N(1) 2.009(2), Ru-N(2) 1.9844(19), Ru-O(1) 2.0047(16),
Ru-O(2) 2.0098(16), C(26)-C(27) 1.513(4), N(4)-C(26) 1.506(3), N(4)-
C(27) 1.511(3), N(3)-Ru-N(4) 177.03(7), Ru-N(4)-C(26) 131.67(16),
Ru-N(4)-C(27) 133.76(15), C(26)-N(4)-C(27) 60.21(16), N(4)-C(26)-
C(27) 60.04(15), N(4)-C(27)-C(26) 59.75(15)

Scheme 1
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